How I chose which project to repeat and what needs fixed Over the course of the semester, I've learned a lot about not only explaining math but also the logistics of printing a helpful 3D model. In many of my calculus courses, professors have stood at the chalkboard and tried to draw a 3D object, only for the students to be more confused than before the visual aid was added. When I thought about which project to do again, I tried thinking of a project where my print was difficult to visualize and only made the topic more confusing. My integration over regions in the plane project came to mind. Originally, I picked the function \(f(x, y) = \frac{1}{3}(x^2)(2y)\) on the plane bounded by \(y = e^{x-5}\) and \(y = ln(x)+5\) from [0, 7] x [0, 7]. This function grows very quickly, which was seen on my model because I picked such a large rectangular region. The print was very tall and super skinny. It was difficult to see the rectangles of the approximation because...