Skip to main content

Stereographic Projection take 2

The first time we took on stereographic projection, I discussed how it reminded me of the little kid night lights that projected starry nights onto the ceiling. When attempting to replicate the starry night, I failed and turned it into a cloudy night projection. Because I was annoyed I couldn't make it work and because right after I finished my project last time, I came up with new ideas, I decided to repeat the stereographic projection example and make it better.

Last time, I used an array of clouds out of frustration because I could not get stars to work. My clouds were each made up of four circles and then I just multiplied them across an array. Well, that was boring. And while I still haven't been able to create the perfect star, I have decided to create a recognizable constellation rather than an array. Since I still couldn't figure out how to use the hull function properly with stars, I decided to create my constellation using lines. I thought this was a genius idea but when I was finished, I realized a piece of my final sphere would be missing, so I scratched that idea too. Eventually, I decided to plot the points where a star would be and hull them to a single point above.

The constellation I chose to replicate is the big dipper because it is a fairly recognizable constellation in my opinion but for those who don't know what it looks like, you can see a picture from azcentral.com below:
I was able to make improvements from my last example by plotting individual points in specific places on the grid to form a constellation rather than just forming an array of identical shapes. I couldn't find actual points of the stars in the constellation, so I just maneuvered the location of the points until it resembled the big dipper. The image below shows the constellation I created.
While the points are pentagons and not quite stars, you are still able to see the constellation form between all of the points! My final object will be a sphere and when a flashlight is shown through the top hole, a projection of the big dipper will appear on the wall. This design was more challenging than my first example and although there was probably a simpler way to code it, my example still runs and I think the print will turn out well.

Comments

Popular posts from this blog

Do Over: Integration Over a Region in a Plane

Throughout the semester we have covered a variety of topics and how their mathematical orientation applies to real world scenarios. One topic we discussed, and I would like to revisit, is integration over a region in a plane which involves calculating a double integral. Integrating functions of two variables allows us to calculate the volume under the function in a 3D space. You can see a more in depth description and my previous example in my blog post, https://ukyma391.blogspot.com/2021/09/integration-for-over-regions-in-plane_27.html . I want to revisit this topic because in my previous attempt my volume calculations were incorrect, and my print lacked structural stability. I believed this print and calculation was the topic I could most improve on and wanted to give it another chance. What needed Improvement? The function used previously was f(x) = cos(xy) bounded on [-3,3] x [-1,3]. After solving for the estimated and actual volume, it was difficult to represent in a print...

Do Over: Ruled Surfaces

Why to choose this project to repeat For the do over project, I would like to choose the ruled surfaces. I don't think my last project was creative, and the 3D printed effect was not very satisfactory. In the previous attempts, all the lines are connected between a straight line and a circle. This connection structure is relatively uncomplicated. The printed model has too many lines, resulting in too dense line arrangement. The gaps between lines are too small, and the final effect is that all the lines are connected into a curved surface, which is far from the effect I expected. What to be improved In this do over project, I would like to improve in two aspects. Firstly, a different ruled surface is chosen. In the previous model, one curve is a unit circle on the \(x-y\) plane, and the ruled surface is a right circular conoid. In this do over project, it is replaced by two border lines. Each borderline is in the shape of an isosceles right triangl...

Knot 10-11

The knot I chose for this project was knot 10-11. That is the eleventh knot that has ten crossings. I picked it for no reason whatsoever. I 3D printed the knot as you can see here. A knot's crossing number is the smallest number of crossings possible in a 2D representation of the knot. This knot's crossing number is 10. A knot's unknotting number is the smallest number of crossings flipped that will give you the unknot. I found an upper bound on the unknotting number. If you switch the crossings circled below, then the knot will become the unknot and therefore has an unknotting number of at most 3. The colorability of a knot can help determine whether or not two knots are actually the same. When the number of crossings in a knot is high, it is actually pretty hard to know if two knots are secretly the same and are only represented differently through Reidemeister moves. Colorability can help confirm that two knots are indeed different. Colorabilit...