Skip to main content

Do-Over: Integration Over Regions in the Plane

How I chose which project to repeat and what needs fixed

Over the course of the semester, I've learned a lot about not only explaining math but also the logistics of printing a helpful 3D model. In many of my calculus courses, professors have stood at the chalkboard and tried to draw a 3D object, only for the students to be more confused than before the visual aid was added. When I thought about which project to do again, I tried thinking of a project where my print was difficult to visualize and only made the topic more confusing. My integration over regions in the plane project came to mind.

Originally, I picked the function \(f(x, y) = \frac{1}{3}(x^2)(2y)\) on the plane bounded by \(y = e^{x-5}\) and \(y = ln(x)+5\) from [0, 7] x [0, 7]. This function grows very quickly, which was seen on my model because I picked such a large rectangular region. The print was very tall and super skinny. It was difficult to see the rectangles of the approximation because of this.
To fix this issue, I can do one of two things: 1) I can have the rectangular region enclosed by [0, 1] x [0, 1] so that the steps between x- and y-values are not so drastic, or 2) I can pick a new function. If I make the rectangular region smaller, you will no longer be able to see the shape of the domain, below.
Therefore, I am going to pick a function that does not grow as quickly over the same domain. This way, you'll be able to compare the original function to a better function and how in this new case you can see the details I originally intended for you to see much clearer. (I wanted the domain to have a leaf-like shape for fall, which I still want to celebrate Taylor Swift's new album.)

How I implemented the improvements

I started implementing these changes by first finding a slow-growing function of two variables that wasn't too basic. I ended up choosing \(f(x,y)=\frac{10}{2x+y}\).
As you can see, this function fixes my huge growth issue over the chosen region, and we can still see the shape of the domain. It may be on the less-interesting side of things, but any fancy functions with exponentials, etc. were not great for printing. Here is the model using the rectangular approximation method and right-hand endpoints:
As you can see, the steps are not as extreme, which was my goal. I think this model does a much better job at helping students visualize a rectangular approximation, given you can actually see the rectangles this time. My print is going to be blown up to have about a 3.5 x 3.5 inch base so that you can see everything as clearly as possible.

Word count: 468

Comments

Popular posts from this blog

Finding an object's center of mass using integration

Thinking about center of mass As a kid, I would sit in class and balance my pencil on my finger. What I didn't know then was that I was finding the pencil's center of mass. An object's center of mass is a point where the average weight of the object lies. In other words, the weighted position vectors of the object at this point sum to zero (source: https://www.dictionary.com/browse/center-of-mass ). The exact location of this point can be found using calculus. First, it is important to understand the moment . The moment for a two-dimensional object is given with respect to both the x- and y-axes. It is a physical characteristic of the object a certain distance from these axes. It's easiest to think about the axes as reference points for where the characteristic acts; in this case, where the mass is distributed. When computing these moments, the hardest concept to grasp is that the moment with respect to y, for example, is given by the x-coordinat...

Do Over: Integration Over a Region in a Plane

Throughout the semester we have covered a variety of topics and how their mathematical orientation applies to real world scenarios. One topic we discussed, and I would like to revisit, is integration over a region in a plane which involves calculating a double integral. Integrating functions of two variables allows us to calculate the volume under the function in a 3D space. You can see a more in depth description and my previous example in my blog post, https://ukyma391.blogspot.com/2021/09/integration-for-over-regions-in-plane_27.html . I want to revisit this topic because in my previous attempt my volume calculations were incorrect, and my print lacked structural stability. I believed this print and calculation was the topic I could most improve on and wanted to give it another chance. What needed Improvement? The function used previously was f(x) = cos(xy) bounded on [-3,3] x [-1,3]. After solving for the estimated and actual volume, it was difficult to represent in a print...

Finding the Center of Mass of a Toy Boat

Consider two people who visit the gym a substantial amount. One is a girl who loves to lift weights and bench press as much as she possibly can. The other is a guy who focuses much more on his legs, trying to break the world record for squat weight. It just so happens that these two are the same height and have the exact same weight, but the center of their weight is not in the same part of their body. This is because the girl has much more weight in the top half of her body and the boy has more weight in the bottom half. This difference in center of mass is a direct result of the different distributions of mass throughout both of their bodies. Moments and Mass There are two main components to finding the center of mass of an object. The first, unsurprisingly, is the mass of the whole object. In this case of the boat example, the mass will be uniform throughout the entire object. This is ideal a majority of the time as it drastically reduces the difficulty...