Skip to main content

Stereographic Projection

Stereographic projection is used in geometry as a mapping function. It allows for a sphere to be projected onto a plane which is a way of picturing an 3D object (such as a sphere) as a 2D picture (a plane). The projection is defined on the entire sphere except for at one point, the projection point. The projection point is located at the topmost point of the sphere and is the point where the projection will be sourced.

Mathematics Behind the Projection

Here is how stereographic projections work! Imagine a sphere above a plane we want to project on to and the top of that sphere (equivalent to the north pole on a globe) will be out projection point N. For any point P’ on the plane, there is a point P on the sphere that is found by drawing a straight line from N to P’.

For this week’s project, I have created a sphere with a design cut out that will demonstrate an example of stereographic projection. The design I have chosen is three circles overlapping to create Disney Micky Mouse Ears. I chose this shape because I thought Mickey Mouse would be a fun shape to make and I believe this might be a technique Disney Parks use. For example, they might use it when projecting their light show on the castle at Magic Kingdom, a way to create park maps, or for special effects in their rides.

For the model, on the top half of the sphere are four cutouts with a circle at the very top. The circle is located at the point [0, 0, 20] and represents the projection point, so our light source will be shining through this hole to project the design onto a wall.  

How To Create the Stereographic Projection

To start this model, I first created what the projection on the plane should look like without the sphere. Using the projection point as the starting point, I created a loop of Mickey Mouse ears that project onto the xy plane. Each mouse represents a projection from a different angle with the projection point. Here is what the xy projection plane looks at from the top and bottom view.




Each mouse shape was created by projecting three cylinders overlapping each other onto the plane. Initially, it was challenging finding the right balance between overlapping coordinates without the shape looking like a bubble, but eventually found a good distance and decreased the radius of the spheres that form the ears. Each point on the plane will be like the point P’ described above.

Now that we have the projection plane mapped out, it is time to add the sphere that will map out this projection when a light is shined through the projection point N. When creating the sphere, the intersection between the initial projection (all the points P’) and the sphere will be removed creating the holes seen in the picture, which is like the point P described at the beginning. We now have a sphere that will project an array of Mickey Mouse ears.




Comments

Popular posts from this blog

Do Over: Double Integrals over Regions

Introduction Over the semester we've looked at many topics and created 3D models. For this we are going to revisit an old topic, double integrals over a region. In this we found the volume of a surface in the xyz-plane bounded by two curves. From the many topics I chose to revisit this topic. I have a couple reason to why I chose to redo this. First, the model did not print correctly. The print added spaces between the rectangular prisms. Another reason was that I think the surface and curves did not represent the topic entirely. The surface I chose just increased between the curves. Improvements When making the model on Onshape there were no spaces between the rectangles, which can be seen on the right. However, when printing this spaces were being added. The second issue was with the surface I chose which was \(f(x,y)=xy+x\). This function only increased over the two curves I chose \begin{align*} f(x) &= \sqrt{x} ...

The Septoil Knot

Knots are a very interesting topic and a field that has not quite been fully discovered, so mathematicians are still discovering new ideas and invariances about knots even today. While it may seem like knots are a simple skill you learn at camp, they actually have a lot of mathematical properties and in this blog post we are going to look at just a few. By mathematical definition, a knot is a closed curve in three dimensional space that does not intersect itself. Since we are working with three dimensional space and you are reading this on a two dimensional screen, we need a way to look at knots in two dimensions and that is where knot projections come in. A knot projection is simply a picture of a knot in two dimensions and where a knot crosses itself in the projection is simply a crossing of that projection. The number of crossings of a knot is the smallest number of crossings among all projections of a knot. Since a knot is not necessarily solid, one...

Knot 10-84

Introduction In mathematics, a knot is simply a closed loop. The simplest version of this is the unknot, which is a just a closed circle (imagine a ponytail holder). Knots, however, quickly become more complicated than this more basic example. This post will examine a particular knot (knot 10-84) and a few of its knot invariants. Crossing Number Knots are often defined by their crossing number, which is the number of times the knot’s strands cross each other. As indicated in its name, knot 10-84 is a 10 crossing knot. In order to visualize the knot, we can look at its knot projection, in which the knot is represented by a line segment broken only at its undercrossings: Tricolorability Now that we’ve looked at knot crossings, we will examine a potential property of knots: tricolorability. In order to understand tricolorability, it is first important to know that one strand of a knot is defined as an unbroken line segment in the knot p...