Skip to main content

HUGE Waves

When starting to think about 2D integration over a specific region in the plane, I thought about indoor surfing. I knew I wanted to choose a function that increased exponentially because I thought it would give us something better to look at, so I imagined waves in the ocean. Since waves in the ocean are not restricted to a specific region and they continue on forever, I had to come up with a way to modify my example to show the restraints. This was my thought process when thinking of indoor surfing. Although I've never been indoor surfing myself, I like the idea of it. You are surfing in a controlled wave that is in a controlled region or pool area. The photo below shows an example of an indoor surfing arena.
From this picture you can see that most indoor surfing places put the wave in more of a square or rectangular region, but I wanted to spruce up my indoor surfing region and make it a quarter circle. When thinking about 2D integration over a region, it helps to think about an indoor surfing arena. The water or wave outline make up the function, the pool that the wave is restricted to is the region in the plane, and the water filling the pool and up to the top of the wave represents the volume making up the entire object. The following f(x) is the function that makes up my wave and D is the domain in which the wave is restricted: \begin{aligned}f\left( x\right) =ye^{x-2}\\ D=\left\{ \left( x,y\right) | x^{2}+y^{2}\leq 5^{2},x\geq 0,y\geq 0\right\} \end{aligned} I knew I wanted to choose a function that goes from a very subtle increase to a major increase to mimic that of a good surfing wave, so I chose a function with an exponential increase. I chose the domain to spruce up the basic wave pool shape.

We can solve for the approximate volume of our shape by breaking it up into multiple rectangular prisms and adding the volume of each prism together. I chose to use the upper left hand corner of each of the rectangular prisms square bases in order to include as many prisms as possible. Because of this, I expect my estimated volume to be greater than the actual volume of the shape. Below is a table showing the volumes for each rectangular prism and a total estimated volume of 258.56 units cubed:
The actual volume of the object can be calculated by using a double integral and integrating with respect to y and then x. Below is the math used to calculate the actual volume to be 270.69 units cubed: \begin{aligned}\int ^{6}_{0}\int _{0}^{\sqrt{36-x^{2}}}ye^{x-2}dydx\\ =\int _{0}^{6}\dfrac{1}{2}y^{2}e^{x-2}| _{0}^{\sqrt{36-x^{2}}}dx\\ =\int _{0}^{6}\dfrac{1}{2}\left( \sqrt{36-x^{2}}\right) ^{2}e^{x-2}dx\\ =\int _{0}^{6}\dfrac{1}{2}\left( 36-x^{2}\right) e^{x-2}dx\\ =\dfrac{10e^{6}-34}{2e^{2}}=270.69units^{3}\end{aligned} My actual volume actually happens to be less than the estimated which means if I were to have chosen the upper right hand points, I would have gotten an over estimate. After creating my object on Onshape, I realized that my wave increases a little too rapidly and it will be too tall to print, so before I print, I will have to scale down my object to make it a little shorter. It's current dimensions are 6 x 6 x 60 inches. The following picture is what my printed object would look like if I do not scale it down. The height of the wave increases as x increases and as y increases.

Comments

Popular posts from this blog

The Approximation of a Solid of Revolution

Most math teachers I've had have been able to break down Calculus into two very broad categories: derivatives and integrals. What is truly amazing, is how much you can do with these two tools. By using integration, it is possible to approximate the shape of a 2-D function that is rotated around an axis. This solid created from the rotation is known as a solid of revolution. To explain this concept, we will take a look at the region bounded by the two functions: \[ f(x) = 2^{.25x} - 1 \] and \[ g(x) = e^{.25x} - 1 \] bounded at the line y = 1. This region is meant to represent a cross section of a small bowl. While it may not perfectly represent this practical object, the approximation will be quite textured, and will provide insight into how the process works. The region bounded by the two functions can be rotated around the y-axis to create a fully solid object. This is easy enough to talk about, but what exactly does this new solid look like? Is...

Solids of Revolution Revisited

Introduction In my previous blog post on solids of revolution, we looked at the object formed by rotating the area between \(f(x) = -\frac{1}{9}x^2+\frac{3}{4} \) and \( g(x)=\frac{1}{2}-\frac{1}{2}e^{-x} \) around the \( x \) axis and bounded by \( x = 0 \) and \( x = 1.5 \). When this solid is approximated using 10 washers, the resulting object looks like this: When I was looking back over the 3D prints I’d created for this course, I noticed that the print for this example was the least interesting of the bunch. Looking at the print now, I feel like the shape is rather uninteresting. The curve I chose has such a gradual slope that each of the washers are fairly similar in size and causes the overall shape to just look like a cylinder. Since calculating the changes in the radiuses of the washers is a big part of the washer method, I don’t think this slowly decreasing curve was the best choice to illustrate the concept. The reason I had done this o...

Finding the Center of Mass of a Toy Boat

Consider two people who visit the gym a substantial amount. One is a girl who loves to lift weights and bench press as much as she possibly can. The other is a guy who focuses much more on his legs, trying to break the world record for squat weight. It just so happens that these two are the same height and have the exact same weight, but the center of their weight is not in the same part of their body. This is because the girl has much more weight in the top half of her body and the boy has more weight in the bottom half. This difference in center of mass is a direct result of the different distributions of mass throughout both of their bodies. Moments and Mass There are two main components to finding the center of mass of an object. The first, unsurprisingly, is the mass of the whole object. In this case of the boat example, the mass will be uniform throughout the entire object. This is ideal a majority of the time as it drastically reduces the difficulty...