Skip to main content

Ruled Surfaces

Introduction

So far, we've spent a lot of time navigating the world of calculus. To begin moving away from calculus, let's discuss ruled surfaces! Ruled surfaces are generated by connecting two curves with straight lines in three-dimensional space. Below, you can see how the given surface is made up of straight lines connecting the points on the left and right curves. If the number of straight lines connecting these curves is infinite, we see a solid surface. We're going to dive into ruled surfaces with an example I find interesting not just because of its shape but also its applications to biology.
(Source: http://www.grad.hr/geomteh3d/Plohe/pravcasta.png)

The curves I chose to define my surface

For an interesting example, I chose the ruled surface defined by the parameterized curve \[x(t)=rcos^5(t)\] \[y(t)=rsin^5(t)\] \[z(t)=0.4t\] and the vertical line \[z(t)=0.4t.\] Why I chose the surface and curves I did

For starters, I chose this curve because it is not self-intersecting. Additionally, it is not just changing the scale of the code given on the class page; it's taking the code and changing the curve to make it a more unique example. More importantly, though, is that I wanted to apply this math to my other major in a fun way! I study biochemistry and math, and I have spent a lot of time learning about DNA mutations and the chemistry in our bodies. I was interested in using a helicoid as my ruled surface example because DNA looks very similar to a helicoid, but rather than creating a ruled surface that resembles a double helix, I wanted to imagine a new mutation in the DNA. First, consider the structure of DNA compared to a helicoid:
(Source: www.rdworldonline.com)
As you can see, DNA base pairing is similar to having straight lines connecting two curves, and in textbooks and images like the one seen we tend to draw the chemical bonds between the DNA bases like we are creating a ruled surface between these two curves. Conversely, the given helicoid has straight lines connecting one curved line and a single straight, vertical line. I created my own DNA mutation from the given helicoid by taking the \(x\)- and \(y\)-components and changing them from just \(rcos(x)\) and \(rsin(x)\) and raising them to the fifth power. This looks like the following:
This looks like pretty messed up DNA! I mutated it like this because I like the way it looks from above even better than how weird it is from the side:
I don't know about you, but I am very ready for Christmas. This looks like a star you could find at the top of a Christmas tree. The star in two-dimensions given by the parameterization \(x(t)=rcos^5(t)\) and \(y(t)=rsin^5(t)\) has been pulled into three dimensions by \(z(t)=0.4t\), which lifts the star up along this vertical line. Because of this, I'm going to call my new mutation an X-mas mutation, just for fun. Overall, my print is going to be around two inches wide and nearly an inch and a half tall. I may scale it to be larger if printing fails or removing supports from between lines that close together proves difficult. We'll see!

Word count: 515

Comments

Popular posts from this blog

Do Over: Double Integrals over Regions

Introduction Over the semester we've looked at many topics and created 3D models. For this we are going to revisit an old topic, double integrals over a region. In this we found the volume of a surface in the xyz-plane bounded by two curves. From the many topics I chose to revisit this topic. I have a couple reason to why I chose to redo this. First, the model did not print correctly. The print added spaces between the rectangular prisms. Another reason was that I think the surface and curves did not represent the topic entirely. The surface I chose just increased between the curves. Improvements When making the model on Onshape there were no spaces between the rectangles, which can be seen on the right. However, when printing this spaces were being added. The second issue was with the surface I chose which was \(f(x,y)=xy+x\). This function only increased over the two curves I chose \begin{align*} f(x) &= \sqrt{x} ...

The Septoil Knot

Knots are a very interesting topic and a field that has not quite been fully discovered, so mathematicians are still discovering new ideas and invariances about knots even today. While it may seem like knots are a simple skill you learn at camp, they actually have a lot of mathematical properties and in this blog post we are going to look at just a few. By mathematical definition, a knot is a closed curve in three dimensional space that does not intersect itself. Since we are working with three dimensional space and you are reading this on a two dimensional screen, we need a way to look at knots in two dimensions and that is where knot projections come in. A knot projection is simply a picture of a knot in two dimensions and where a knot crosses itself in the projection is simply a crossing of that projection. The number of crossings of a knot is the smallest number of crossings among all projections of a knot. Since a knot is not necessarily solid, one...

Knot 10-84

Introduction In mathematics, a knot is simply a closed loop. The simplest version of this is the unknot, which is a just a closed circle (imagine a ponytail holder). Knots, however, quickly become more complicated than this more basic example. This post will examine a particular knot (knot 10-84) and a few of its knot invariants. Crossing Number Knots are often defined by their crossing number, which is the number of times the knot’s strands cross each other. As indicated in its name, knot 10-84 is a 10 crossing knot. In order to visualize the knot, we can look at its knot projection, in which the knot is represented by a line segment broken only at its undercrossings: Tricolorability Now that we’ve looked at knot crossings, we will examine a potential property of knots: tricolorability. In order to understand tricolorability, it is first important to know that one strand of a knot is defined as an unbroken line segment in the knot p...