Skip to main content

Area under a region

 

If you want to find the area under a region, you can draw rectangles and add the area of the rectangles together to find an aproximation. If you want to find the exact area, you use an integral bounded by the region. But what about when we introduce a 3rd plane? How do we aproximate the volume under a region when we consider all three planes? The concept is very similar. To aproximate the volume, we use rectangles but add the element of height and sum the rectangles volumes. For the actual volume, we use a double integral (using Fubini's Theorem) bounded by the region.
Consider the region contained in the intersection of \[y=x^\frac{1}{2}\] \(and\) \[y=x^3.\]

We are going to aproximate and find the actual volume of this region under the function \[f(x,y)=xy.\]

We're going to find the aproximated area using squares, so let's zoom in a little bit until we have a 5x5 area for a total of 25 squares to work with.

Do you see the 5x5 section of squares that outline the region contained by the two functions? Each block is 0.2x0.2 wide/long. What we want to do is look at the top right corner of each square in the grid. For any top right corner of a square that is on the line of a function or contained inside the region of the functions, we notate them.

What are the coordinates of these points? We will need them for the function \(f(x,y)=xy.\)

Now, we simply plug these coordinates into the \(f(x,y)=xy\) function and input these numbers into a 5x5 table on google sheets. This table will make it easier to visualize what's going on as we input these numbers as heights on onshape to represent whats happening in 3-d. These are the heights of each square, now turned into rectangular prisms. To find the volume of these prisms, we take the length (0.2) times the width (0.2) of each square and multiply it by the height and take the total sum to get the aproximated voolume of this region, noted below the table.

The representation on Onshape is done in a 1:1 scale using inches as metrics, meaning each square has side length and width 0.2 and the heights are exactly as they are in the table.

To find the actual volume of the region we use a double integral. The outside integral is the integral from x=0 to x=1, or the boundary of the region with respect to the x-axis. The inner integral is the integral from \(y=x^3\) to \(y=x^\frac{1}{2}\) or the area bounded by the bottom equation up to the area bounded by the upper equation. This double integral gives us the volume of the region in all 3 planes by the function \(f(x,y)=xy\) contained or bounded by the functions in the 2-dimensions with respect to the y-axis contained in-between the functions and then the x-axis in-between the inner and outer-most point from the origin along the x-axis. \[\int_{}^{}\int_{D}^{}f(x,y)dA\] \[\int_{}^{}\int_{R}^{}f(x,y)dydx\] \[\int_{a}^{b}\int_{c}^{d}f(x,y)dydx\] \[\int_{a}^{b}\int_{g1(x)}^{g2(x)}f(x,y)dydx\] \[\int_{0}^{1}\int_{x^3}^{x^\frac{1}{2}}xy dydx\]

So, the aproximated volume was 0.1328 cubic units and the actual volume is 0.1041 cubix units. I chose these functions because it would be contained within a 1x1.5 cubic inch volume for easy scaling (in this case no need to scale at all) in Onshape for 3-d printing and representation. I also like that the numbers were small and easy to work with once you wrap your head around how small the region really is. It adds depth and understanding beyond what I've ever known when we look at that region in all 3 planes and incoorperate a function containing x and y terms. We've all seen or could imagine this region on a graph, but the actual scale of it is so much smaller than it seems in a 2-d plane, which is why I like it.

Comments

Popular posts from this blog

Do Over: Integration Over a Region in a Plane

Throughout the semester we have covered a variety of topics and how their mathematical orientation applies to real world scenarios. One topic we discussed, and I would like to revisit, is integration over a region in a plane which involves calculating a double integral. Integrating functions of two variables allows us to calculate the volume under the function in a 3D space. You can see a more in depth description and my previous example in my blog post, https://ukyma391.blogspot.com/2021/09/integration-for-over-regions-in-plane_27.html . I want to revisit this topic because in my previous attempt my volume calculations were incorrect, and my print lacked structural stability. I believed this print and calculation was the topic I could most improve on and wanted to give it another chance. What needed Improvement? The function used previously was f(x) = cos(xy) bounded on [-3,3] x [-1,3]. After solving for the estimated and actual volume, it was difficult to represent in a print...

Minimal Surfaces

Minimum surfaces can be described in many equivalent ways. Today, we are going to focus on minimum surfaces by defining it using curvature. A surface is a minimum surface if and only if the mean curvature at every point is zero. This means that every point on the surface is a saddle point with equal and opposite curvature allowing the smallest surface area possible to form. Curvature helps define a minimal surface by looking at the normal vector. For a surface in R 3 , there is a tangent plane at each point. At each point in the surface, there is a normal vector perpendicular to the tangent plane. Then, we can intersect any plane that contains the normal vector with the surface to get a curve. Therefore, the mean curvature of a surface is defined by the following equation. Where theta is an angle from a starting plane that contains the normal vector. For this week’s project, we will be demonstrating minimum surfaces with a frame and soap bubbles! How It Works Minimum surfac...

Do Over: Ruled Surfaces

Why to choose this project to repeat For the do over project, I would like to choose the ruled surfaces. I don't think my last project was creative, and the 3D printed effect was not very satisfactory. In the previous attempts, all the lines are connected between a straight line and a circle. This connection structure is relatively uncomplicated. The printed model has too many lines, resulting in too dense line arrangement. The gaps between lines are too small, and the final effect is that all the lines are connected into a curved surface, which is far from the effect I expected. What to be improved In this do over project, I would like to improve in two aspects. Firstly, a different ruled surface is chosen. In the previous model, one curve is a unit circle on the \(x-y\) plane, and the ruled surface is a right circular conoid. In this do over project, it is replaced by two border lines. Each borderline is in the shape of an isosceles right triangl...